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Abstract

In-operation modal analysis has become a valid alternative for structures where a classic forced-vibration
test would be difficult if not impossible to conduct. The modelling of output-only data obtained from
naturally excited structures is particularly interesting because the test structure remains in its normal in-
operation condition during the test. One of the drawbacks of in-operation analysis is that part of the modal
parameters can no longer be estimated. Consequently, the applicability of in-operation modal models
remains somewhat restricted. For some in-operation applications, interest lies in the identification of the
forces that gave rise to the measured response signals. In order to solve this ill-conditioned problem, a
complete modal model of the structure is required. Recently, a sensitivity-based method was proposed for
the normalization of operational mode shape estimates on the basis of in-operation modal models only.
This method allows the reconstruction of complete modal models from output-only data. In this paper, the
possibility of using such re-completed in-operation modal models for the identification of localized forces is
explored.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the past few years, the identification of output-only data has received a considerable amount
of attention. Adapting model-based system identification techniques (e.g., maximum likelihood
estimator, least-squares complex exponential estimator, subspace techniques) for use with output-
only data, has created the possibility of estimating modal models for in-operation structures
excited by ambient noise and vibration (e.g., traffic, wind, waves, etc.) [1–3]. For some structures,
in-operation modal analysis is the only way of obtaining an experimental modal model since
classic forced-vibration tests are sometimes difficult or impossible to conduct, at least with
standard testing material. Moreover, the use of artificial excitation devices (shakers, drop weights)
is considered expensive and unpractical especially in cases where the ambient excitation sources
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cannot be excluded from the measurement set-up (e.g., civil structures). The modelling of output-
only data obtained from naturally excited structures is particularly interesting because the test
structure remains in its normal in-operation condition during the test. This can be considered as
an advantage, since the condition of the test structure during a laboratory forced-vibration test
often differs significantly from the structure’s real in-operation working conditions. An example is
given by high-speed ships where the mass loading of water adjacent to the hull varies with the
speed of the ship through the water. Since changes in mass loading induce changes in modal
parameters, the dynamic behaviour of the ship will depend upon its speed. Other vehicles or
structures (e.g., bridges open for traffic, offshore platforms, cars, trains, etc.) show a similar
response to changes in working condition [4–8]. For some in-operation applications, interest lies
in the identification of the forces that gave rise to a given (measured) set of response signals. For
this purpose, a complete modal model is required. One of the drawbacks of operational analysis is
that part of the modal parameters can no longer be estimated. Since the ambient forces that excite
the test structure are not being measured, the modal participation factors can no longer be
determined. Consequently, the estimated operational mode shapes are not correctly scaled since
their scaling factor will depend on the unknown ambient excitation. So far, techniques are not
available for the normalization of operational mode shapes purely on the basis of output-only
data. All known methods either involve a detailed knowledge of the material characteristics of the
test structure (finite element model approach [9]) or make very restrictive assumptions about the
excitation [10]. Another method involves performing an additional forced vibration test, in a
limited number of points, in order to re-scale the in-operational mode shape estimates [11].
Recently, a novel approach was presented for the normalization of operational mode shapes on a
basis of in-operation modal models only [12]. It is shown that by adding or removing, for instance,
one (or more) masses (with well-known weights) to the test structure, the operational mode shapes
can be normalized by means of the measured shift in natural frequencies between the original and
mass-loaded condition. By normalizing the operational mode shapes, a complete modal model
can be reconstructed. On the basis of this model, an inverse problem can be formulated for the
identification of the unknown forces that gave rise to the measured responses. In Ref. [13], the
force identification problem was addressed and an inverse solver was proposed and compared to
classic approaches (e.g., pseudo-inverse). In this paper, the proposed inverse solver was evaluated
in combination with the sensitivity-based normalization approach. Previously, the sensitivity-
based normalization technique was successfully used in a similar inverse problem, namely, the
identification of damage from output-only data [14]. Initially, the in-operation modal models are
re-completed by means of the sensitivity-based normalization approach. Second, the inverse
solver proposed in Ref. [13] is used for the identification of the force(s). The approach is validated
by means of experiments performed on a beam structure.

2. Theoretical aspects

2.1. Introduction

The following sections give a theoretical overview of the followed approach. The computation
of modal parameter sensitivity and the sensitivity-based normalization technique are briefly
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discussed in Sections 2.2 and 2.3. The identification of forces from the complete modal models is
treated in Section 2.4.

2.2. Sensitivity of modal parameters

The technique proposed in Ref. [12], for the normalization of mode shape estimates obtained
from operational data, is based on the use of modal parameter sensitivity to local changes in mass.
As shown in the literature [15], the sensitivity of modal parameters to local changes in mass,
stiffness or damping can be calculated by means of the estimated poles and normalized mode
shapes without the use of a finite element model (FEM). As an example, the sensitivity of degree
of freedom (d.o.f.) j of a mass-normalized mode shape i to a local change in mass at d.o.f. k is
given by
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with Nm being the number of modes, whereas the sensitivity of natural frequency oi to a local
change in mass in d.o.f. k is given by
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For an undamped system, Eq. (1) is exact if all Nm modes of the structure are taken into account.
Despite the fact that only a limited number of modes can be determined experimentally in general,
a good approximation of the mode shape sensitivity can be obtained. It is important to note that
for the calculation of the sensitivity of the natural frequency in Eq. (2), only the corresponding
mode shape vector is required. Hence, the sensitivity of the natural frequencies will be more exact.
Similar expressions can be written for the sensitivity of modal parameters to local changes in
stiffness [15,16]. Moreover, damping can be taken into account by assuming a general viscous
damped system. For real-life engineering structures with little damping present (normal mode
shapes) and a predominant linear behaviour, Eqs. (1) and (2) usually form a good approximation
for the sensitivity of the estimated natural frequencies and mode shapes.
Sensitivity analysis has proven to be extremely useful in several application domains. A first

example is given by the (re)design of prototypes. A sensitivity analysis is a fast and easy method to
use to predict the effect of modifications on the dynamics of a prototype without having to apply
any actual high-cost changes to the structure [15,17]. An example is the use of modal parameter
sensitivity for the compensation of mass loading effects induced by transducers and
accelerometers [16–19]. By solving an inverse problem, a sensitivity analysis can also be used
for the localization and assessment of structural damage [14,20]. In the following section, a
sensitivity-based method will be introduced for the normalization of operational mode shape
estimates.

2.3. Sensitivity-based normalization of operational mode shapes

In Refs. [12,14], a sensitivity-based method was presented for the normalization of operational
mode shape estimates obtained from output-only vibration data. Eqs. (1) and (2) require the use
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of correctly normalized mode shape estimates. In the case of a classical forced-vibration test, where
the input forces are measured, a full modal model of the structure can be determined. As long as a
driving-point measurement is performed, the mode shape estimates obtained can be scaled
according to any normalization scheme desired [15]. During an in-operational modal analysis, only
part of the modal model can be determined. Since the ambient forces that excite the structure are no
longer being measured, the modal participation factors cannot be determined. As a result, the
estimated mode shape vectors remain unscaled (i.e., dependant on the unknown level of ambient
excitation) [21]. The relationship between the unscaled (No � 1) mode shape vector fwgi (as
obtained by in-operation modal analysis) and the corresponding correctly normalized mode shape
vector f/gi; obtained from a classical forced-vibration test, of mode i can therefore be expressed by

f/gi ¼ aifwgi ð3Þ

with ai being an operational scaling factor for mode i dependant on the level of ambient excitation
and No the number of outputs. It is shown in Ref. [12] that an estimate of the operational scaling
factor can be obtained by performing a controlled mass addition experiment on the test structure. A
first order approximation of ai for a normal mode i is given by

aiC
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with k being the position of mass change Dmk and N the number of mass changes used. The
addition or removal of a small known mass Dmk; in d.o.f. k of the test structure, will induce a
change in natural frequencies between the original and the mass-loaded condition. The experimental
determination of this change Doi; together with the in-operational modal model of the original
structure, is sufficient to provide an estimate of the operational scaling factor ai: It should be noted
that the change in natural frequency Doi can be experimentally obtained from a single measurement
in a well-chosen point of the structure. Placing the mass in or near a nodal point of the mode shape
vector considered for re-scaling should be avoided. The change in the corresponding poles of the
mass-loaded and the original condition will be very small. Using such a location might produce
incorrect scaling results due to the presence of uncertainties on the estimated poles.

2.4. Source identification

Once the operational mode shape estimates are normalized, the frequency response functions
(FRFs) HoiðoÞ between output o and input i can be synthesized for all frequencies o in the
considered bandwidth by
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with lr being the pole of mode r and Qr a modal scaling factor dependent on the type of
normalization (e.g., Qr ¼ 1=ð2jorÞ for mass normalization). The complex conjugate is hereby
denoted as ð	Þn: On a basis of these FRFs, the following input–output relation can be written as

fXðof Þg ¼ ½Hðof Þ�fFðof Þg ð6Þ
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with ½Hðof Þ� being the (No � No) FRF matrix, fXðof Þg and fFðof Þg the (No � 1) column vectors
with, respectively, the spectra of the responses and forces. By solving the inverse problem

fFðof Þg ¼ ½Hðof Þ��1fXðof Þg; ð7Þ

the unknown forces can be identified on the basis of the measured response spectra for all Nf

frequencies of of the considered frequency band. In Ref. [13], an algorithm is presented to
estimate, starting from the measured response spectra and the estimated modal model, the forces
that are acting on a structure. Force identification requires the inversion of FRF matrices, which
are derived from the estimated modal model. These FRF matrices are, however, badly
conditioned due to rank deficiency. In practice, a pseudo-inverse of the FRF matrix is often
used [22],

fFðof Þg ¼ ½Hðof Þ�þfXðof Þg: ð8Þ

This approach results in forces that are distributed over the whole structure. This means that it is
not always straightforward to detect the position of the sources. A better localization is possible
by using an iterative ‘weighted’ pseudo-inverse defined as

fFðof ;WÞg ¼ ½W� ½Hðof Þ�½W�
� �þfXðof Þg ð9Þ

with ½W� ¼ diagðfw1;w2;ygÞ a (frequency-independent) diagonal weighting matrix. If ½Hðof Þ�½W�
is of full rank, Eq. (9) reduces to the classic pseudo-inverse solution. This can be easily seen by
right multiplying both sides of Eq. (8) with ½W�þ and recalling that ½Hðof Þ�½W�

� �þ¼ ½W�þ½Hðof Þ�þ

when both matrices are of full rank. In that case, the weighting matrix ½W� has no influence on the
identified forces. However, if ½Hðof Þ�½W� is rank deficient, then all singular values smaller than a
given tolerance are neglected during the computation of the pseudo-inverse. Consequently, Eq. (9)
no longer equals a classic pseudo-inverse because the resulting force vector fFðof ;WÞg will
depend on the weighting matrix ½W�: This matrix right multiplies the FRF matrix allowing to put
more emphasis (or weight) on some input locations while other locations—corresponding with
zero or small w-values—are eliminated. Because ½Hðof Þ� is rank deficient, it is not possible to find
a unique solution for the force since an infinite amount of solutions exists. By using a weighted
pseudo-inverse, an infinite set of force vectors fFðof ;WÞg; dependant on ½W�; are obtained. All
these possible solutions satisfy the input–output relation (6) since

½Hðof Þ�fFðof Þg ¼ ½Hðof Þ�½W�ð½Hðof Þ�½W�ÞþfXðof Þg ¼ fXðof Þg: ð10Þ

The diagonal weighting matrix ½W� ¼ diagðfwgÞ (with fwg ¼ fw1;w2;yg) is determined in such a
way that the cp-norm of the forces is minimized.

KðWÞ ¼
XNf

f¼1

jjfFðof ;WÞgjjpp ð11Þ

with p being a value close to zero (e.g., 0.01) and jjfFgjjpp ¼ ð1=NoÞ
PNo

i¼1 jFijp: Note that for p-0;
the cp-norm jjfFðof ;WÞgjjpp converges to the number of entries in fFðof ;WÞg different from zero.
Hence, minimizing Eq. (11) corresponds to making as many entries as possible of fFðof ;WÞg
equal to zero, i.e., finding the solution requiring the lowest possible amount of locations.
Because the cp-norm is differentiable with respect to ½W�; cost function (11) can be

minimized by means of classical optimization algorithms. Note that Eq. (11) can be written as
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a quadratic cost function

KðWÞ ¼
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with

Riðof ;WÞ ¼ jFiðof ;WÞjp=2: ð13Þ

This quadratic cost function can be minimized using the Gauss–Newton optimization algorithm.
An analytical expression for the Jacobian matrix ½J� ¼ @fRg=@fwg; i.e., the derivative of the
residue (13) with respect to ½W� ¼ diagðfwgÞ; can be obtained. One can verify that the entries
½J�ij ¼ @Ri=@wj of the Jacobian matrix equal
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with Reð	Þ and Imð	Þ; respectively, denoting the real and the imaginary part. The derivatives
@Fi=@wj ¼ @fFg=@fwg

	 

ij
are given by
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with ½F� ¼ diagðfFgÞ and ½W� ¼ diagðfwgÞ: Thanks to the fact that the Jacobian matrix can be
computed analytically using Eqs. (14) and (15) (instead of using time-consuming finite difference
approximations), a significant reduction of the computation time is obtained [13].
For an objective localization of the force(s), force indices can be calculated for each d.o.f. k of

the structure on a basis of the identified force vector

bk ¼

PNf

f¼1 fFkðof Þg
�� ��2PNo

k¼1

PNf

f¼1 fFkðof Þg
�� ��2: ð16Þ

If a localized force is present at d.o.f. k; a high value for the force index at that location will be
obtained.

3. Experimental results

In order to illustrate the effectiveness of the combined approach of the sensitivity-based
normalization technique [12] and the inverse solver proposed in Ref. [13], the following
experiments were performed. A 1 kg steel beam ð0:840m� 0:030 m� 0:005mÞ was elastically
suspended in free–free conditions. An input–output experimental set-up was constructed in order
to allow a full evaluation of the results from the proposed force identification techniques.
Vibration response measurements were performed by means of a scanning laser vibrometer in 55
collinear locations along the full length of the beam. Throughout the experiments, the beam was
excited with a stationary multi-sine signal by means of an electromechanical shaker positioned in
d.o.f. 55 (at one end of the structure). The applied stationary force was measured simultaneously
with each response measurement by means of a force cell. A maximum likelihood (ML) estimator
[23] was used for the estimation of the modal parameters of the first six bending modes of the
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beam. Since input–output measurements were performed, the mode shape estimates could be
easily (mass-)normalized by means of a driving point measurement in d.o.f. 55. In case of in-
operation modal data, a different approach is required since a driving point measurement is not
available. For this reason, a second independent mass normalization of the reference condition
was performed by means of a controlled mass change experiment. For this purpose, a small mass
(weighing 10:95� 10�3 kg) was removed from d.o.f. 1 of the structure. The experimental
determination of the induced shift in natural frequency allows the estimation of operational
scaling factors from Eq. (4) for each of the considered modes. An overview of the results can be
found in Table 1. These include the natural frequency oi and damping ratio xi of the reference
condition together with the shift in natural frequency Doi induced by the mass change in d.o.f. 1
for each mode i ði ¼ 1;y; 6Þ: A comparison between the first set of mass-normalized mode shapes
‘3’, scaled by means of the driving point measurement, and the second set ‘�’, scaled by means of
the described mass addition experiment, is presented in Fig. 1 for the first four modes. It can be
clearly seen that the results of the sensitivity-based method are in good agreement with those of
the driving point mass normalization. This fact can be observed more quantitatively by
calculating the modal scaling factors (MSF) between the first and second set of mass-normalized
mode shapes. As can be seen from Table 1, these values are close to unity indicating a good
agreement between both normalization methods. A more thorough validation of the sensitivity-
based normalization technique, based on the comparison of forced response and in-operation
modal data, can be found in Ref. [12].
Once the ‘operational’ mode shape estimates are normalized according to the sensitivity-based

technique, a full modal model can be reconstructed according to Eq. (5). For the experiments on
the beam, a ð55� 55Þ FRF matrix can be calculated for every considered frequency. As an
example of the quality of the reconstruction, Fig. 2 shows the amplitudes and phases of the
measured ‘þ’ and synthesized ‘–’ FRF between input 55 and output 55 (driving point location). A
good correspondence between the measured and synthesized FRF can be observed. Similar results
can be obtained in case a driving-point normalization was used for the reconstruction of the FRF
data set.
On the basis of the synthesized FRFs, an inverse problem can be formulated for the

identification of the ‘unknown’ forces (see Section 2.4). By solving the inverse problem and
calculating the normalized force indices, information can be obtained on the location of
the force(s). Figs. 3–4 show the results for the force indices obtained respectively, with the

Table 1

Overview of the sensitivity-based normalization results

Mode oi (rad/s) xi ð%Þ Doi (rad/s) MSF

1 282.76 0.023 4.82 1.037

2 768.16 0.061 12.02 1.032

3 1499.87 0.027 21.71 1.024

4 2466.78 0.017 33.61 0.988

5 3652.09 0.030 48.27 1.005

6 5028.36 0.097 64.00 0.812
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Fig. 1. Comparison of mode shape normalization results for the first four bending modes: driving point ‘3’ and

sensitivity-based ‘�’ normalization results.
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Fig. 2. Measured ‘þ’ and synthesized ‘–’ FRF for driving-point location.
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Fig. 3. Force localization result on the basis of pseudo-inverse and the sensitivity-based FRFs.
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Fig. 4. Force localization result on the basis of pseudo-inverse and the driving-point FRFs.
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Fig. 5. Force localization result on the basis of weighted pseudo-inverse and the sensitivity-based FRFs.
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sensitivity-based FRF data set and the driving point FRF data set. In both cases, a classic pseudo-
inverse approach was used for solving the inverse problem. Both plots show a high force index for
d.o.f. 55, revealing the actual force location for both data sets. However, it should be noted that
the results do not exclude the presence of smaller forces in other locations. If the proposed
iterative weighted pseudo-inverse is used for the identification of the force(s), the force
localization results improve dramatically (Figs. 5 and 6). As before, the correct force location is
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Fig. 6. Force localization result on the basis of weighted pseudo-inverse and the driving-point FRFs.
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Fig. 7. Comparison between synthesized and measured force based on the sensitivity-based FRFs.
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identified for both data sets. Moreover, the results (almost) exclude the presence of forces in other
locations.
Once the correct force location(s) are revealed, the actual force(s) (amplitude and phase) can be

identified in the considered frequency range by means of a simple pseudo-inverse. Figs. 7 and 8
show the amplitudes and phases for the measured ‘þ’ and identified ‘–’ force spectrum in d.o.f. 55
for both FRF data sets. Once again, good correspondence is observed for both magnitude and
phases.

4. Conclusions

In this paper, the applicability of the sensitivity-based normalization approach for force
identification on the basis of output-only data was successfully evaluated. The quality of the
reconstructed FRF data and the advantages of using an iterative weighted pseudo-inverse over a
classic pseudo-inverse were illustrated by means of experiments performed on a beam structure.
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